
of 41

Abstract − A hidden Markov model based classifier is proposed
in this paper to perform automatic speech recognition using
myoelectric signals from the muscles of vocal articulation.  The
classifier's resilience to temporal variance is compared to a
linear discriminant analysis classifier that was used in a
pervious study.  Speech recognition was performed, using five
channels of myoelectric signals, on isolated words from a 10-
word vocabulary.  Temporal variance was induced by
temporally misaligning data from the test set, with respect to
the training set.  When compared to the LDA classifier, the
hidden Markov model classifier demonstrated a markedly
lower variation in classification error due to the temporal
misalignment.  Characteristics of the hidden Markov model
MES classifier suggest that it would effectively complement a
conventional acoustic speech recognizer, in a multi-modal
speech recognition system.
Keywords − automatic speech recognition, myoelectric signal,
hidden Markov model

 I. INTRODUCTION

Automatic speech recognition (ASR) is a potential
alternative control technology for high performance jet
aircraft.  ASR can significantly improve pilot efficiency and
safety by simplifying the user interface and encouraging
'heads-up' flying [1].  Unfortunately, conditions during
flight in a jet aircraft are not ideal for conventional ASR
systems, which use only acoustic speech information to
perform speech recognition.  High ambient noise within the
cockpit and various stress conditions that a pilot must
endure while flying (e.g. high G-force, positive pressure
breathing, vibration) degrade the classification accuracy of
conventional ASR systems [1].  Work has been conducted
to improve ASR under noisy conditions [2] and during
speaker stress [3]; however, mono-modal ASR systems,
relying solely on acoustic information, will eventually
saturate in performance.

Recently, we proposed a multi-modal ASR system,
using the myoelectric signal (MES) from articulatory
muscles as a second source of speech information [4].  MES
has two advantages in ASR.  First, MES is immune to
acoustic noise.  Second, word pairs that sound similar but
are articulated in a dissimilar manner, manifest distinctively
in the MES (e.g. "sign" and "fine").  While a conventional
ASR would have difficulty distinguishing between these
words because of their acoustic similarity, the
distinctiveness in the MES enables the MES ASR to
differentiate these signals with relative ease.

In a previous study investigating this multi-modal
approach, speech information was shown to be present in

the MES by performing ASR, using only MES from five
articulatory muscles [4].  A linear discriminant analysis
(LDA) classifier was utilized on a set of wavelet transform
features, reduced by principle component analysis (PCA).
Classification errors ranged from 2.68% to 10.36% for a 10-
word vocabulary.

While this result was encouraging, the LDA classifier
required temporal alignment of the data, which was
accomplished by aligning the MES data from each word
repetition to the start of the audible speech.  Temporal
variance was further reduced by instructing subjects to
maintain a constant speaking rate.  In practical situations,
speaking rate will vary, which poses a problem for MES
ASR.  The temporal position of articulation relative to the
acoustic signal will vary with speaking rate; therefore so
will the relative position of the MES data.  If the MES data
are temporally misaligned, the classification error for the
LDA classifier will increase.

In this paper, the use of a hidden Markov model
(HMM) classifier is proposed to perform ASR on the MES.
Most current conventional ASR systems use HMMs to
classify acoustic speech information.  HMMs use a Markov
chain topology, which preserves the structural
characteristics and temporal ordering of the signal.  In
addition, each state in the Markov chain has statistical
parameters, which account for the probabilistic nature of the
observed data.  The structure of the HMM allows it to cope
with time-scale variance and shape variance in the observed
signal.  Thus, the HMM classifier is expected to be much
more resilient to temporal variance than the LDA classifier.

 II.  METHOD AND MATERIALS

In this study, ASR was performed on isolated words
from a 10-word vocabulary, using the information in the
MES.  The resilience of the HMM to temporal variations
was evaluated by classifying words from the test set that
were temporally misaligned with the training set.  The
performance of the HMM classifier was compared to the
LDA classifier used in the previous study [4].

The MES data set used in this study was a subset of the
data used in the previous study [4].  Surface MES were
obtained from five articulatory muscles of the face: the
levator anguli oris, the zygomaticus major, the platysma,
the depressor anguli oris, and the anterior belly of the
digastric.  Each MES channel was collected using pairs of
Ag-AgCl button electrodes, embedded in the lining of a
fighter pilot's oxygen mask (Fig. 1).  Electrodes were 1/2" in
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diameter, except for the levator anguli oris electrodes,
which were 3/8" in diameter.  A light coating of electrode
paste was applied to each electrode to improve the
electrode-skin interface.  A Red-DotTM Ag-AgCl electrode
was placed on the back of the neck to provide a common
reference.  The five MES channels were differentially
amplified and simultaneously sampled at 1000 Hz, along
with the acoustic speech signal, which was obtained using a
cardiod dynamic microphone, held by the subject near the
opening at the front of the mask.

Two Canadian English-speaking male subjects (S1 and
S2) participated in this study.  Both subjects had no known
speech disorders.  A 10-word vocabulary, consisting of the
words "zero" to "nine" was used.  For each subject, 15 series
of 30 words were constructed, each series containing three
repetitions of each word in the vocabulary1.  The order of
the words in each series were randomly permuted and
presented to the subject one at time, with at least one second
between words to minimize coarticulatory and anticipatory
effects.  Subjects were asked speak each word in a
consistent manner, minimizing the variation in volume and
speaking rate.  A rest period between each series of words
was provided for subjects, as needed.

The data were processed offline.  The data set from each
subject was split in half, with every second word used as
part of the training set and the remaining words used as the
test set.  MES data for each word repetition were segmented
into records of 1024 ms, using the acoustic channel as a
trigger.  In the previous study, it was found that there exists
speech information in the MES up to 500 ms preceding the

                                               
1 The total number of words was intended to be 450; however, six words
for subject S1 and one word for subject S2 were mistakenly not recorded
(clipped at the beginning or end of the data collection).

start of the audible speech [4]; therefore, the training set was
segmented using a fixed pretrigger value of 500 ms.  To
misalign the test set with respect to the training set, a
pretrigger value ranging from 400 to 600 ms, in steps of 25
ms, was used to segment the test set.  This resulted in a
±100 ms range of temporal misalignment of the test set with
respect to the training set.

ASR was performed using two classification
techniques.  The first classification technique was the LDA
classifier used in the previous study [4].  Wavelet transform
coefficients were computed for each MES channel and these
coefficients underwent PCA feature reduction.  Six PCA
coefficients were retained from each MES channel,
presenting a total of 30 features to the LDA classifier.

The second classification technique used a six state,
left-right HMM, with single mixture observation Gaussian
densities.  Observation windows of 64 ms were used.  In
each observation window, three features were extracted
from each MES channel: the first two autoregressive
coefficients, and the integrated absolute value [5].  It was
found, empirically, that using higher order autoregressive
coefficients did not improve the classification rate for this
setup.  For each observation window, an observation vector
(oi) of dimension 15 was computed (3 features × 5 MES
channels).  Observation windows overlapped with a spacing
of 8 ms between windows, so the observation sequence (O =
[o1, o2, ..., oN]) had a length of N = 121.  A HMM (λj) was
trained on the observation sequence for every word in the
vocabulary (Wj; j = 1, 2, ..., 10), using the expectation-
maximization algorithm [6].  An unknown word (Wk) from
the test set was classified by first computing its observation
sequence (Ok).  Next, the likelihood of each HMM
generating that observation sequence was computed
(P(Ok|λj); j = 1, 2, ..., 10).  Finally, the unknown word was
classified according to the maximum likelihood (i.e. Wk =

"
W , where "  = arg

j
max P(Ok|λj)).

 III.  RESULTS

Fig. 2 is a plot of the classification error as a function of
temporal misalignment for both classifiers and both
subjects.  Positive temporal misalignment corresponds to a
decrease in the pretrigger value used in data segmentation of
the test set.

At a temporal misalignment of 0 ms, where the test set
is properly aligned with the training set, the LDA classifier
has classification errors of 10.36% (S1) and 2.68% (S2),
while the HMM classifier has classification errors of
13.06% (S1) and 14.73% (S2).  As the temporal
misalignment increases in the positive or negative direction,
the classification error of the LDA classifier increases
significantly for both subjects.  The maximum classification
error for the LDA classifier, within the ±100 ms range of
temporal misalignment, is 55.41% (S1) and 44.64% (S2), an
increase of over 40% from the minimum classification error.
Temporal misalignment did not have any considerable
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Fig. 1. Pilot oxygen mask with electrodes embedded in the lining
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effects on the classification rate of the HMM classifier.  The
maximum classification error of the HMM classifier reaches
15.76% (S1) and 18.27% (S2), which differs from its
minimum classification error by only 2.70% (S1) and 3.57%
(S2).

Two additional observations were made for the HMM
classifier, which have important implications for a multi-
modal ASR system.  First, the confusion matrices for the
HMM classifier (Fig. 3 and Fig. 4) show that two words can
account for approximately half of the total misclassifications
for each subject.  For subject S1, 12 of the 29
misclassifications resulted from the words "zero" and "six".
For subject S2, 20 of the 33 misclassifications resulted from
the words "eight" and "nine".

Second, during misclassification, typically there was
only a small difference between the likelihoods computed
for the correct word, and the likelihood computed for the
incorrectly chosen word.  With such a small difference in
likelihoods, perhaps we should not be classifying just to a

single word.  Consider, instead, using the MES ASR system
simply to reduce the dimensionality of the classification
problem for a second stage of a multi-modal system.  In the
first stage, the MES ASR system chooses the two words
with the highest likelihoods (i.e. classification on the second
rank).  Now, the second stage would only have to
distinguish between those two words.  Classifying the data
on the second rank, the classification errors of the MES
ASR system are 5.86% and 6.70%, for subject S1 and S2,
respectively.  Thus, the MES ASR reduced the 10-word
classification problem to a 2-word classification problem
with high accuracy.

 IV.  DISCUSSION

A HMM classifier was presented in this paper to
perform ASR on MES.  As expected, the HMM classifier
had a markedly lower variation in classification error due to
temporal misalignment, compared to the LDA classifier.
This is because the HMM uses a time sequence of
observations to classify its data, instead of the examining
the data in its entirety, which is how the LDA classifier
operates.

Although the HMM classifier has demonstrated a
superior resilience to temporal variance, when there is little
or no temporal misalignment, the LDA classifier has a lower
classification error than the HMM classifier.  However, the
HMM classification error may be improved by optimizing
the signal features used in the observation vectors.  Also, the
current structure of the HMM classifier does not account for
the dependence or correlation between observations, which
can be accomplished by including state duration parameters
and time derivatives of features; this may further improve
the classification rate.

The HMM-based MES ASR system has already
demonstrated that it is able to reduce a 10-word
classification problem to a 2-word classification problem,
with an accuracy exceeding 93%.  In addition, two words in
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Fig. 2. Classification error as a function of temporal misalignment.
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the vocabulary could account for the majority of the
misclassifications.  These results suggest that the HMM
classifier would perform well in a multi-modal ASR system.

To test this hypothesis a separate identification multi-
modal ASR system would have to be implemented,
consisting of two uni-modal classifiers or experts: a MES
ASR expert and an acoustic ASR expert.  A supervisor
could then fuse the output from both experts to decide the
final classification.  We anticipate that the acoustic expert
would be able to accurately classify words that the MES
expert has difficulties with, and that the MES expert would
be able to accurately classify words that the acoustic expert
has difficulties with.  In addition to normal conditions, the
performance of the multi-modal ASR system should also be
evaluated under various stress conditions typical during
flight of a jet aircraft (e.g. acoustic noise, positive pressure
breathing)

 V. CONCLUSIONS

It has been demonstrated that MES ASR using a HMM
classifier is resilient to temporal variance, which offers
improved robustness compared to the LDA classifier.  The
overall performance of the MES ASR can be further
enhanced by optimizing the features and structure of the
HMM classifier to improve classification rate.
Nevertheless, the HMM classifier has already shown that it
would effectively complement an acoustic classifier in a
multi-modal ASR system.
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